Electrical Business

Articles Articles Voice Data Video etc

Powering learning at Ryerson University’s largest residences

June 16, 2020 | By David Lester


The optical network terminal was installed inside walls rather than on desktops, so there is no cabling clutter in dorms. Courtesy Ryerson.

June 16, 2020 – Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. Located in downtown Toronto, Ryerson is a distinctly urban university with a mission to serve societal needs and a long-standing commitment to engaging its community.

The school offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to more than 38,950 students, including 2300 Master’s and PhD students, nearly 2700 faculty and staff, and more than 140,000 alumni worldwide.

Ryerson is making its mark by building for the future, with an exciting array of projects either under construction or in development. Each project meets a unique set of needs, but all reflect the university’s commitment to providing distinctive spaces where students, faculty and staff can learn, teach, work and conduct research, scholarship and creative activity.

Communications at Pitman Hall

Advertisement

Pitman Hall was built in 1991 and, with 14 floors and 565 rooms, is Ryerson’s largest residence. The original cabling infrastructure, which was over 25 years old, utilized Cat 3 cabling (IBM Type 3), which was only able to support 10Mbps connectivity, and there was limited deployment of wire-less in the residence.

The existing conduits were completely full and there was no extra space to in-stall new ethernet switches. Upgrading the copper-based LAN serving the residence would have required four new communications closets—difficult to achieve in a residence.

Compared to a copper-based LAN (local area network), an optical LAN solution is a simpler, more streamlined and more cost-effective network. It collapses the traditional LAN architecture and converges voice, data & video services onto a single optical fiber. An optical LAN solution also re-quires less equipment and cabling than a copper-based LAN, thereby saving more money.

Plus, because it centralizes all management functions for the entire network in one location, the passive optical network (PON) manager allows IT staff members to configure and reconfigure connectivity much faster and more easily than they could with a traditional LAN.

Ryerson was able to install 28 fiber risers in an existing HVAC space. Four cables of 12 fibers each serviced 24 rooms. Two fibers were deployed to each optical network terminal (ONT)—as per BICSI’s educational standards (bicsi.org—even though it requires only one fiber. The one advantage of fiber over copper was the ability to reduce conduit sizes.

A total of 660 ONTs were installed in the dorm rooms, common space, kitchens and lounges. Three 24-port ONTs were installed to pow-er the WAPs (wireless access points) in the hallways and cafeteria. Co-located with each ONT was a hospitality WAP. The team was even able to install an outdoor wireless access point in the residence courtyard.

Since the existing communications infrastructure was unusable, building a new one for the optical LAN solution was much cheaper than building one for a traditional ethernet solution. The team was able to collapse all the floor telecom rooms into a centralized equipment room where the optical line terminal (OLT) resides. This simplifies the network, saves money and speeds up service delivery.

 By reducing cabling, floor, rack and communications closet requirements, an optical LAN solution saves a great deal of physical space. For example, a typical copper-based LAN serving up to 2000 users requires 90 RUs (rack units) of space. The active ethernet LAN switches take up one full rack, while two additional racks are necessary to terminate the large bundles of copper cables associated with the switches. That’s a total of 18, 7-ft tall equipment racks.

Further, an optical LAN solution not only needs less physical space but also requires fewer power, fire suppression and HVAC requirements, which helps reduce overhead costs. Rather than going into a communications closet, the PON splitters reside in the central equipment room rack, thus reducing the required floor space even more.

The optical LAN solution did not require the use of a telecom room. For new construction, this is a benefit to architects, as valuable floor space need not be used to house telecom equipment.

Connected to fiber that runs down the building risers, the 1150 OLT delivers a 2.4-Gbps connection to the ONTs located throughout the residence. The optical line terminal also aggregates all user traffic and feeds it, via four 10Gbps ethernet connections, to the transport network router.

Providing the same wall-outlet connectivity with which active ethernet users are familiar, the ONT offers GPON (Gigabit passive optical network) connectivity, including PoE (power-over-ethernet), and integrates high-speed data, voice & video within a single fiber. By simplifying and streamlining installation procedures, the ONT helps reduce both Cap-Ex and Op-Ex costs and, compared to active ethernet and fiber-to-the-desktop (FTTD) architectures, it reduces optical LAN deployment costs even further.

The Optical LAN gives the students high-speed, high-performance access to digital learning tools, including Wi-Fi and cloud-based networking, via their desktop computers, laptops and smartphones.

A new build: Daphne Cockwell Complex Residence

Construction on the new Daphne Cockwell Complex Residence started in November 2015, and was open for students in August 2019. The 18-floor residence of 100 units spans 122,450 sf, with a capacity of 332 residents.

Because this was a new construction and the student rooms were part of a suite, the ONTs were installed in communications enclosures in the common areas. The fiber architecture was more of a traditional layout as the team was able to establish small telecom rooms on each floor.

The fiber splitters are located in telecom rooms with a few ONTs for the hallway wireless access points, building automation systems (BAS) and electronic safety & security (ESS). There is one splitter per floor, providing connections for up to 32 ONTs over a single fiber.

A centralized 48V power plant with battery backup powers the ONTs and delivers PoE to the end devices. An eLimiter ensures 100 VA compliance with NEC Class 2 power cabling. Each ONT can provide 60W of PoE to the end devices (Figure 1). The team was able to significantly reduce the size of the telecom rooms, allowing the architect to use this valuable space for student needs.

Courtesy Ryerson

The main equipment room contains a 24-port ONT, the OLT and the main fiber cross-connect to the floors and the campus area network connection in the podium equipment room in the basement (Figures 2 and 3).

The optical LAN solution is scalable, and both environmentally and financially sustainable. Com-pared to copper-based active ethernet LANs, an optical LAN solution offers practically limitless bandwidth while using up to 90% less space and consuming up to 30% to 65% less power. It also incurs day-one capital costs that are 30% to 50% lower than traditional LAN solutions, and saves 50% to 70% in year-over-year costs for a significantly lower total cost of ownership.

The optical LAN solution allows Ryerson University not only to be sustainable, but also cost-effective. It allows the institution to reduce its costs and then apply those savings to investments in other areas of education.


David Lester is manager of Communication Infrastructure Services, and Computing and Communications Services at Ryerson University.

This article—along with other great content—appears in the June 2020 edition of Electrical Business Magazine.


Print this page

Advertisement

Stories continue below